Каталог заданий ЕГЭ.
Задание #3811

В правильной треугольной пирамиде SABC точки M, N и K – середины ребер основания, а P, Q и R делят боковые ребра SA, SB и SC в отношении 1:2, считая от вершины.
а) Доказать, что точки M, N, K, P, Q, R – лежат на одной сфере.
б) При каких углах наклона бокового ребра к основанию центр сферы лежит вне пирамиды SABC.

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B14
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3420 - В правильной треугольной пирамиде SABC через в...

#3649 - В конус вписан цилиндр так, что нижнее основан...

#3668 - В прямой треугольной призме АВСА’B’C’, где А...

#3792 - В четырехугольной пирамиде SABCD (четырехугольн...

#3830 - Дана правильная шестиугольная призма \(ABCDEFA_{1}B...

0.0044