Вопрос B16 #3260 Математика (профиль)

В выпуклом четырехугольнике \(ABCD\) точки \(K, M, P, E\) – середины сторон \(AB\), \(BC\), \(CD\) и \(DA\) соответственно.
А) Докажите, что площадь четырехугольника \(KMPE\) равна половине площади четырехугольника \(ABCD\).
Б) Найдите большую диагональ четырехугольника \(KMPE\), если известно, что \(AC=6, BD=8\), а сумма площадей треугольников \(AKE\) и \(CMP\) равна \(3 \sqrt{3}\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3122 - А) Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен пол...

#3241 - В прямоугольный треугольник \(ABC\) вписана окружность \( \omega\), касающаяся гипот...

#3321 - Окружность касается прямых \(AB\) и \(BC\) соответственно в точках \(D\) и \(E\). Точ...

#3403 - В остроугольном треугольнике \(ABC\) из вершин \(A\) и \(C\) опущены высоты \(AP\) и...

#3422 - Две окружности пересекаются в точках А и В так, что их центры лежат по разные сторон...