Вопрос B16 #3260 Математика

В выпуклом четырехугольнике \(ABCD\) точки \(K, M, P, E\) – середины сторон \(AB\), \(BC\), \(CD\) и \(DA\) соответственно.
А) Докажите, что площадь четырехугольника \(KMPE\) равна половине площади четырехугольника \(ABCD\).
Б) Найдите большую диагональ четырехугольника \(KMPE\), если известно, что \(AC=6, BD=8\), а сумма площадей треугольников \(AKE\) и \(CMP\) равна \(3 \sqrt{3}\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#2926 - Через вершины \(A,B,C\) параллелограмма \(ABCD\) со сторонами \(AB=3\) и \(BC=5\) пр...

#2945 - Две окружности имеют общий центр \(O\). На окружности большего радиуса выбрана точка...

#2995 - В равнобокую трапецию вписана окружность.А) Докажите, что диаметр окружности равен с...

#3122 - А) Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен пол...

#3241 - В прямоугольный треугольник \(ABC\) вписана окружность \( \omega\), касающаяся гипот...