Вопрос B16 #3241 Математика (профиль)

В прямоугольный треугольник \(ABC\) вписана окружность \( \omega\), касающаяся гипотенузы \(AB\) в точке \(M\). Точка \(O\) - центр описанной около треугольника \(ABC\) окружности. Касательная к окружности \(\omega\), проведенная из точки \(O\), пересекает сторону \(AC\) в точке \(P\).
А) Докажите, что площадь треугольника \(ABC\) равна произведению длин отрезков \(AM\) и \(BM\).
Б) Найдите площадь четырехугольника \(BCPO\), если известно, что \(AM=12, BM=5\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3122 - А) Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен пол...

#3260 - В выпуклом четырехугольнике \(ABCD\) точки \(K, M, P, E\) – середины сторон \(AB\), ...

#3321 - Окружность касается прямых \(AB\) и \(BC\) соответственно в точках \(D\) и \(E\). Точ...

#3403 - В остроугольном треугольнике \(ABC\) из вершин \(A\) и \(C\) опущены высоты \(AP\) и...

#3422 - Две окружности пересекаются в точках А и В так, что их центры лежат по разные сторон...