Каталог заданий ЕГЭ.
Задание #3239

Через середину ребра \(AA_{1}\) куба \(ABCDA_{1}B_{1}C_{1}D_{1}\) перпендикулярно прямой \(BD_{1}\) проведена плоскость \(\alpha\).
А) Докажите, что сечением куба плоскостью \(\alpha\) является правильный шестиугольник.
Б) Найдите угол между плоскостями \(\alpha\) и \(ABC\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B14
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3120 - Дан куб \(ABCDDA_{1}B_{1}C_{1}D_{1}\). А) Докажите, что кажда...

#3258 - В правильной треугольной призме точка \(P\) – с...

#3319 - В правильной треугольной пирамиде \(SABC\) ребро ...

#3401 - В правильной треугольной пирамиде \(SABC\), точк...

#3420 - В правильной треугольной пирамиде SABC через в...

0.0311