Каталог заданий ЕГЭ.
Задание #3122

А) Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен половине разности суммы катетов и гипотенузы.
Б) Найдите радиус окружности, вписанной в прямоугольный треугольник, если радиусы окружностей, вписанных в треугольники, на которые он делится высотой, проведённой к гипотенузе, равны 4 и 5.

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3321 - Окружность касается прямых \(AB\) и \(BC\) соответс...

#3403 - В остроугольном треугольнике \(ABC\) из вершин \(A...

#3422 - Две окружности пересекаются в точках А и В так...

#3651 - Равнобедренные треугольники \(ABC\) \((AB = BC)\) и \(KLM...

#3670 - Отрезок АВ является диаметром окружности. Точ...

0.0057