Каталог заданий ЕГЭ.
Задание #3120

Дан куб \(ABCDDA_{1}B_{1}C_{1}D_{1}\).
А) Докажите, что каждая из плоскостей \(BDA_{1}\) и \(B_{1}D_{1}C\) перпендикулярна прямой \(AC_{1}\).
Б) Найдите объем части куба, заключенной между плоскостями \(BDA_{1}\) и \(B_{1}D_{1}C\), если известно, что отрезок диагонали \(AC_{1}\), заключенный между этими плоскостями, имеет длину \(\sqrt{3}\)

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B14
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3420 - В правильной треугольной пирамиде SABC через в...

#3649 - В конус вписан цилиндр так, что нижнее основан...

#3668 - В прямой треугольной призме АВСА’B’C’, где А...

#3792 - В четырехугольной пирамиде SABCD (четырехугольн...

#3811 - В правильной треугольной пирамиде SABC точки M, N...

0.0084