Каталог заданий ЕГЭ.
Задание #2993

В правильной треугольной пирамиде \(SABC\) точка \(P\) – середина \(AB\), точка \(K\) – середина \(BC\). Через точки \(P\) и \(K\) параллельно \(SB\) проведена плоскость \(\omega\).
А) Докажите, что сечение пирамиды плоскостью \(\omega\) является прямоугольником.
Б) Найдите расстояние от точки \(S\) до плоскости \(\omega\), если известно, что \(SC=5, AC=6\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B14
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3420 - В правильной треугольной пирамиде SABC через в...

#3649 - В конус вписан цилиндр так, что нижнее основан...

#3668 - В прямой треугольной призме АВСА’B’C’, где А...

#3792 - В четырехугольной пирамиде SABCD (четырехугольн...

#3811 - В правильной треугольной пирамиде SABC точки M, N...

0.0066