Вопрос B14 #2924 Математика

В правильной четырехугольной пирамиде \(FABCD\) с основанием \(ABCD\) все ребра равны \(5\). Точки \(M,\:N\) лежат на ребрах \(BC\) и \(CD\) соответственно, причем \(CM=3,\:DN=2\). Плоскость \(\alpha\) проходит через точки \(M,\: N\) и параллельна прямой \(FC\).
А) Докажите, что плоскость \(\alpha\) перпендикулярна ребру \(AF\)
Б) Вычислите площадь сечения пирамиды плоскостью \(\alpha\)

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B14
Перейти к тесту, который содержит данный вопрос

Похожие задания

#2943 - Основанием пирамиды \(SABCD\) является трапеция \(ABCD\), у которой \(AD || BC\). На...

#2993 - В правильной треугольной пирамиде \(SABC\) точка \(P\) – середина \(AB\), точка \(K\...

#3120 - Дан куб \(ABCDDA_{1}B_{1}C_{1}D_{1}\). А) Докажите, что каждая из плоскостей \(BDA_{...

#3239 - Через середину ребра \(AA_{1}\) куба \(ABCDA_{1}B_{1}C_{1}D_{1}\) перпендикулярно пр...

#3258 - В правильной треугольной призме точка \(P\) – середина ребра \(A_{1}B_{1}\), точка \...