Каталог заданий ЕГЭ.
Задание #2910

а) На доске записаны числа: 4, 14, 24, ... , 94, 104. Можно ли стереть сначала одно число из записанных, потом стереть еще два, потом – еще три, и, наконец, стереть еще четыре числа так, чтобы после каждого стирания сумма оставшихся на доске чисел делилась на 11?
б) В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B19
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3425 - а) Найти количество натуральных делителей чис...

#3654 - Натуральное число \(x\) имеет остаток \(5\) при де...

#3673 - Взяли последовательность первых 15 натуральны...

#3797 - Заданы три бесконечных целочисленных возраст...

#3816 - Назовем квадратное уравнение \(ax^{2}+bx+c=0\) с нату...

0.0049