Вопрос B16 #2908 Математика

В окружность радиуса \(R\) вписан четырехугольник \(ABCD\), \(P\) – точка пересечения его диагоналей, \(AB=CD=5, AD>BC\). Высота , опущенная из точки \(B\) на сторону \(AD\), равна \(3\), а площадь треугольника \(ADP\) равна \(\frac{}{}\).
А) Докажите, что \(ABCD\) – равнобедренная трапеция
Б) Найдите стороны \(AD, BC\) и радиус окружности \(R\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#2926 - Через вершины \(A,B,C\) параллелограмма \(ABCD\) со сторонами \(AB=3\) и \(BC=5\) пр...

#2945 - Две окружности имеют общий центр \(O\). На окружности большего радиуса выбрана точка...

#2995 - В равнобокую трапецию вписана окружность.А) Докажите, что диаметр окружности равен с...

#3122 - А) Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен пол...

#3241 - В прямоугольный треугольник \(ABC\) вписана окружность \( \omega\), касающаяся гипот...