Вопрос B14 #2905 Математика

Все ребра правильной четырехугольной пирамиды \(FABCD\) с основанием \(ABCD\) равны \(7\). Точки \(P,Q,R\) лежат на ребрах \(FA, AB, BC\) соответственно, причем \(FP=BR=4,AQ=3\).
А) Докажите, что плоскость \(PQR\) перпендикулярна ребру \(FD\)
Б) Найдите расстояние от вершины \(D\) до плоскости \(PQR\)

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B14
Перейти к тесту, который содержит данный вопрос

Похожие задания

#2924 - В правильной четырехугольной пирамиде \(FABCD\) с основанием \(ABCD\) все ребра равн...

#2943 - Основанием пирамиды \(SABCD\) является трапеция \(ABCD\), у которой \(AD || BC\). На...

#2993 - В правильной треугольной пирамиде \(SABC\) точка \(P\) – середина \(AB\), точка \(K\...

#3120 - Дан куб \(ABCDDA_{1}B_{1}C_{1}D_{1}\). А) Докажите, что каждая из плоскостей \(BDA_{...

#3239 - Через середину ребра \(AA_{1}\) куба \(ABCDA_{1}B_{1}C_{1}D_{1}\) перпендикулярно пр...