Вопрос B13 #2904 Математика

Дано уравнение \(\sqrt{1-cos2x}=sin2x\).
А) Решите уравнение.
Б) Укажите корни этого уравнения, принадлежащие отрезку \(\left[- \frac{3\pi}{2};0 \right ]\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B13
Перейти к тесту, который содержит данный вопрос

Похожие задания

#2923 - Дано уравнение \(\displaystyle 2^{|x-2|sinx} = (\sqrt{2})^{x|sinx|}\)А) Решите уравн...

#2942 - Дано уравнение \(\sqrt{4 cos 2x - 2 sin 2x}=2 cos x\).А) Решите уравнение.Б) Укажите...

#2992 - Дано уравнение \(\displaystyle 4^{1+sin x}-5 \cdot (\sqrt{2})^{1+2 sin x} + 2=0\).А)...

#3119 - Дано уравнение \(cos 2x - 2 sin 2x = 2 \). А) Решите уравнение. Б) Найдите корни это...

#3238 - Дано уравнение \(\displaystyle log_{2}x^{2} + log_{x}4=5\). А) Решите уравнение. Б) ...