Каталог заданий ЕГЭ.
Задание #2869

В ромб вписана окружность \(\Theta\). Окружности \(w_{1}\) и \(w_{2}\) (разного радиуса) расположены так, что каждая касается окружности \(\Theta\) и двух соседних сторон ромба.
А) Докажите, что площадь круга, ограниченного окружностью \(\Theta\), составляет менее 80% площади ромба.
Б) Найдите отношение радиусов окружностей \(w_{1}\) и \(w_{2}\), если известно, что диагонали ромба относятся, как \(1:2\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3422 - Две окружности пересекаются в точках А и В так...

#3651 - Равнобедренные треугольники \(ABC\) \((AB = BC)\) и \(KLM...

#3670 - Отрезок АВ является диаметром окружности. Точ...

#3794 - В правильный треугольник со стороной a вписан...

#3813 - Первая окружность вписана в треугольник АВС и...

0.004