Вопрос B14 #2848 Математика

В правильной четырехугольной пирамиде \(PABCD\) высота \(PO\) в полтора раза больше, чем сторона основания.

А) Докажите, что через точку \(O\) можно провести такой отрезок \(KM\) с концами на сторонах \(AD\) и \(BC\) соответственно, что сечение \(PKM\) пирамиды будет равновелико основанию пирамиды.

Б) Найдите отношение площади полной поверхности пирамиды \(PABMK\) к площади полной поверхности пирамиды \(PABCD\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B14
Перейти к тесту, который содержит данный вопрос

Похожие задания

#2924 - В правильной четырехугольной пирамиде \(FABCD\) с основанием \(ABCD\) все ребра равн...

#2943 - Основанием пирамиды \(SABCD\) является трапеция \(ABCD\), у которой \(AD || BC\). На...

#2993 - В правильной треугольной пирамиде \(SABC\) точка \(P\) – середина \(AB\), точка \(K\...

#3120 - Дан куб \(ABCDDA_{1}B_{1}C_{1}D_{1}\). А) Докажите, что каждая из плоскостей \(BDA_{...

#3239 - Через середину ребра \(AA_{1}\) куба \(ABCDA_{1}B_{1}C_{1}D_{1}\) перпендикулярно пр...