Вопрос B14 #2848 Математика (профиль)

В правильной четырехугольной пирамиде \(PABCD\) высота \(PO\) в полтора раза больше, чем сторона основания.

А) Докажите, что через точку \(O\) можно провести такой отрезок \(KM\) с концами на сторонах \(AD\) и \(BC\) соответственно, что сечение \(PKM\) пирамиды будет равновелико основанию пирамиды.

Б) Найдите отношение площади полной поверхности пирамиды \(PABMK\) к площади полной поверхности пирамиды \(PABCD\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B14
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3120 - Дан куб \(ABCDDA_{1}B_{1}C_{1}D_{1}\). А) Докажите, что каждая из плоскостей \(BDA_{...

#3239 - Через середину ребра \(AA_{1}\) куба \(ABCDA_{1}B_{1}C_{1}D_{1}\) перпендикулярно пр...

#3258 - В правильной треугольной призме точка \(P\) – середина ребра \(A_{1}B_{1}\), точка \...

#3319 - В правильной треугольной пирамиде \(SABC\) ребро основания \(AB\) равно \(2\), а бо...

#3401 - В правильной треугольной пирамиде \(SABC\), точки \(P, Q, R\) лежат на боковых ребр...