Каталог заданий ЕГЭ.
Задание #2831

В остроугольном неравнобедренном треугольнике \(ABC\) проведены высоты \(AA_{1}\) и \(CC_{1}\). Точки \(A_{2}\) и \(C_{2}\) симметричны середине стороны \(AC\) относительно прямых \(BC\) и \(AB\) соответственно.
А) Докажите, что отрезки \(A_{1}A_{2}\) и \(C_{1}C_{2}\) лежат на параллельных прямых.
Б) Найдите расстояние между точками \(A_{2}\) и \(C_{2}\), если известно, что \(AB=7, BC=6, CA=5\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3403 - В остроугольном треугольнике \(ABC\) из вершин \(A...

#3422 - Две окружности пересекаются в точках А и В так...

#3651 - Равнобедренные треугольники \(ABC\) \((AB = BC)\) и \(KLM...

#3670 - Отрезок АВ является диаметром окружности. Точ...

#3794 - В правильный треугольник со стороной a вписан...

0.0049