Каталог заданий ЕГЭ.
Задание #2791

В правильной треугольной пирамиде \(SABC\) с основанием \(ABC\) известны ребра \(AB=8 \sqrt{3}\) и \(SC=17\).
А) Докажите, что прямые \(AB\) и \(SC\) перпендикулярны.
Б) Найдите площадь сечения пирамиды плоскостью, проходящей через точки \(A, B\) и середину высоты пирамиды, проведенной из вершины \(S\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B14
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3120 - Дан куб \(ABCDDA_{1}B_{1}C_{1}D_{1}\). А) Докажите, что кажда...

#3239 - Через середину ребра \(AA_{1}\) куба \(ABCDA_{1}B_{1}C_{1}D_{1...

#3258 - В правильной треугольной призме точка \(P\) – с...

#3319 - В правильной треугольной пирамиде \(SABC\) ребро ...

#3401 - В правильной треугольной пирамиде \(SABC\), точк...

0.1521