Каталог заданий ЕГЭ.
Задание #2755

Точка \(D\) лежит на стороне \(BC\) треугольника \(ABC\).
а) Докажите, что \(AD^{2}=AB^{2} \cdot \frac{CD}{BC} + AC^{2} \cdot \frac{BD}{BC} - CD \cdot BD\).
б) Найдите площадь треугольника \(ABC\), если известно, что \(AB=14, AC=11, BD=3, AD=\sqrt{145}\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3422 - Две окружности пересекаются в точках А и В так...

#3651 - Равнобедренные треугольники \(ABC\) \((AB = BC)\) и \(KLM...

#3670 - Отрезок АВ является диаметром окружности. Точ...

#3794 - В правильный треугольник со стороной a вписан...

#3813 - Первая окружность вписана в треугольник АВС и...

0.0069