Вопрос B16 #2755 Математика

Точка \(D\) лежит на стороне \(BC\) треугольника \(ABC\).
а) Докажите, что \(AD^{2}=AB^{2} \cdot \frac{CD}{BC} + AC^{2} \cdot \frac{BD}{BC} - CD \cdot BD\).
б) Найдите площадь треугольника \(ABC\), если известно, что \(AB=14, AC=11, BD=3, AD=\sqrt{145}\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#2926 - Через вершины \(A,B,C\) параллелограмма \(ABCD\) со сторонами \(AB=3\) и \(BC=5\) пр...

#2945 - Две окружности имеют общий центр \(O\). На окружности большего радиуса выбрана точка...

#2995 - В равнобокую трапецию вписана окружность.А) Докажите, что диаметр окружности равен с...

#3122 - А) Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен пол...

#3241 - В прямоугольный треугольник \(ABC\) вписана окружность \( \omega\), касающаяся гипот...