Вопрос B16 #2736 Математика

Даны треугольники \(ABC\) и \(A_{1}B_{1}C_{1}\). Прямые \(AB\) и \(A_{1}B_{1}\) пересекаются в точке \(C_{2}\). Прямые \(AC\) и \(A_{1}C_{1}\) пересекаются в точке \(B_{2}\). Прямые \(BC\) и \(B_{1}C_{1}\) пересекаются в точке \(A_{2}\).
а) Докажите, что точки \(A_{2} , B_{2} , C_{2}\) лежат на одной прямой.
б) Найдите отношение площади треугольника \(A_{1}B_{1}C_{1}\) к площади треугольника \(ABC\), если высоты треугольника \(ABC\) равны \(2, \frac{10}{11}, \frac{5}{7}\), а высоты треугольника \(A_{1}B_{1}C_{1}\) равны \(2, \frac{5}{3}, \frac{10}{9}\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#2926 - Через вершины \(A,B,C\) параллелограмма \(ABCD\) со сторонами \(AB=3\) и \(BC=5\) пр...

#2945 - Две окружности имеют общий центр \(O\). На окружности большего радиуса выбрана точка...

#2995 - В равнобокую трапецию вписана окружность.А) Докажите, что диаметр окружности равен с...

#3122 - А) Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен пол...

#3241 - В прямоугольный треугольник \(ABC\) вписана окружность \( \omega\), касающаяся гипот...