Вопрос B16 #2603 Математика

Внутри равностороннего треугольника \(ABC\) в произвольном месте поставлена точка \(M\).
а) Докажите, что сумма расстояний от точки \(M\) до сторон треугольника \(ABC\) равна высоте этого треугольника.
б) Найдите расстояние от точки \(M\) до стороны \(AB\), если расстояние от точки \(M\) до сторон \(AC\) и \(BC\) соответственно равны \(10 \sqrt{133}\) и \(3 \sqrt{133}\), а площадь треугольника \(ABC\) равна \(14364 \sqrt{3}\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#2926 - Через вершины \(A,B,C\) параллелограмма \(ABCD\) со сторонами \(AB=3\) и \(BC=5\) пр...

#2945 - Две окружности имеют общий центр \(O\). На окружности большего радиуса выбрана точка...

#2995 - В равнобокую трапецию вписана окружность.А) Докажите, что диаметр окружности равен с...

#3122 - А) Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен пол...

#3241 - В прямоугольный треугольник \(ABC\) вписана окружность \( \omega\), касающаяся гипот...