Каталог заданий ЕГЭ.
Задание #2574

а) Докажите, что медианы тетраэдра (отрезки, соединяющие вершины с точками пересечения медиан противоположных граней) и отрезки, соединяющие середины противоположных рёбер, пересекаются в одной точке.

б) Дан тетраэдр \(ABCD\) с прямыми плоскими углами при вершине \(D\) . Площади граней \(BCD, ACD и ABD\) равны соответственно \(132 , 150 , 539\) . Найдите объём тетраэдра.

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B14
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3420 - В правильной треугольной пирамиде SABC через в...

#3649 - В конус вписан цилиндр так, что нижнее основан...

#3668 - В прямой треугольной призме АВСА’B’C’, где А...

#3792 - В четырехугольной пирамиде SABCD (четырехугольн...

#3811 - В правильной треугольной пирамиде SABC точки M, N...

0.005