Каталог заданий ЕГЭ.
Задание #2571

Дан треугольник \(ABC\). В нём проведены биссектрисы \(AM\) и \(BN\) , каждая из которых равна \(\frac{2772\sqrt{6}}{71}\).
а) Докажите, что треугольник \(ABC\) - равнобедренный.
б) Найдите площадь треугольника \(ABC\) , если его основание равно \(132\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3122 - А) Докажите, что радиус окружности, вписанной ...

#3241 - В прямоугольный треугольник \(ABC\) вписана окру...

#3260 - В выпуклом четырехугольнике \(ABCD\) точки \(K, M, P, ...

#3321 - Окружность касается прямых \(AB\) и \(BC\) соответс...

#3403 - В остроугольном треугольнике \(ABC\) из вершин \(A...

0.0063