Вопрос B16 #2327 Математика

В равнобедренную трапецию \(ABCD\) с основаниями \(BC\) и \(AD\) вписана окружность. Вторая окружность, построенная на боковой стороне \(AB\) как на диаметре, второй раз пересекает большее основания \(AD\) в точке \(H\).
А) Докажите, что треугольник \(CHD\) равнобедренный.
Б) Найдите основания трапеции, если радиусы первой и второй окружностей равны соответственно \(6\) и \(6,5\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#2926 - Через вершины \(A,B,C\) параллелограмма \(ABCD\) со сторонами \(AB=3\) и \(BC=5\) пр...

#2945 - Две окружности имеют общий центр \(O\). На окружности большего радиуса выбрана точка...

#2995 - В равнобокую трапецию вписана окружность.А) Докажите, что диаметр окружности равен с...

#3122 - А) Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен пол...

#3241 - В прямоугольный треугольник \(ABC\) вписана окружность \( \omega\), касающаяся гипот...