Вопрос B16 #2289 Математика

На сторонах прямоугольного треугольника \(ABC\), как на диаметрах, построены полуокружности \(w, w_{1} и w_{2}\). (рис.).
а) Докажите, что площадь треугольника \(ABC\) равна сумме площадей двух луночек, ограниченных полуокружностями \(w\) и \(w_{1}\) и полуокружностями \(w\) и \(w_{2}\).
б) Пусть прямая \(l\) касается \(w_{1}\) в точке \(M\), а \(w_{2}\) в точке \(P\). Найдите длину отрезка \(MP\), если известно, что сумма площадей двух луночек равна \(49\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#2926 - Через вершины \(A,B,C\) параллелограмма \(ABCD\) со сторонами \(AB=3\) и \(BC=5\) пр...

#2945 - Две окружности имеют общий центр \(O\). На окружности большего радиуса выбрана точка...

#2995 - В равнобокую трапецию вписана окружность.А) Докажите, что диаметр окружности равен с...

#3122 - А) Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен пол...

#3241 - В прямоугольный треугольник \(ABC\) вписана окружность \( \omega\), касающаяся гипот...