Вопрос B16 #2256 Математика (профиль)

Точка \(M\) лежит на диаметре \(AB\) окружности с центром \(O\). \(C\) и \(D\) – точки окружности, расположенные по одну сторону от \(AB\), причем \(\angle CMA = \angle DMB\).
а) Докажите, что \(\angle OCM = \angle ODM \).
б) Найдите площадь четырехугольника \(COMD\), если известно, что \(OM = 4\), \(BM = 2\), \(\angle CMA=\angle DMB= 45^{\circ}\) .

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика (профиль) B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#3122 - А) Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен пол...

#3241 - В прямоугольный треугольник \(ABC\) вписана окружность \( \omega\), касающаяся гипот...

#3260 - В выпуклом четырехугольнике \(ABCD\) точки \(K, M, P, E\) – середины сторон \(AB\), ...

#3321 - Окружность касается прямых \(AB\) и \(BC\) соответственно в точках \(D\) и \(E\). Точ...

#3403 - В остроугольном треугольнике \(ABC\) из вершин \(A\) и \(C\) опущены высоты \(AP\) и...