Вопрос B16 #2256 Математика

Точка \(M\) лежит на диаметре \(AB\) окружности с центром \(O\). \(C\) и \(D\) – точки окружности, расположенные по одну сторону от \(AB\), причем \(\angle CMA = \angle DMB\).
а) Докажите, что \(\angle OCM = \angle ODM \).
б) Найдите площадь четырехугольника \(COMD\), если известно, что \(OM = 4\), \(BM = 2\), \(\angle CMA=\angle DMB= 45^{\circ}\) .

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B16
Перейти к тесту, который содержит данный вопрос

Похожие задания

#2926 - Через вершины \(A,B,C\) параллелограмма \(ABCD\) со сторонами \(AB=3\) и \(BC=5\) пр...

#2945 - Две окружности имеют общий центр \(O\). На окружности большего радиуса выбрана точка...

#2995 - В равнобокую трапецию вписана окружность.А) Докажите, что диаметр окружности равен с...

#3122 - А) Докажите, что радиус окружности, вписанной в прямоугольный треугольник, равен пол...

#3241 - В прямоугольный треугольник \(ABC\) вписана окружность \( \omega\), касающаяся гипот...