Вопрос B14 #2253 Математика <- Есть решение

В правильной треугольной пирамиде \(PABC\) боковое ребро равно \(10\), а сторона основания равна \(2\sqrt{30}\) . Через точки \(B\) и \(C\) перпендикулярно ребру \(PA\) проведена плоскость \(\alpha\).
а) Докажите, что плоскость \(\alpha\) делит пирамиду \(PABC\) на два многогранника, объемы которых относятся как \(2:3\).
б) Найдите площадь сечения пирамиды \(PABC\) плоскостью \(\alpha\).

Верный ответ: !! Показать ответ!!

Показать все вопросы типа Математика B14
Перейти к тесту, который содержит данный вопрос

Решение

Highslide JS

Похожие задания

#2924 - В правильной четырехугольной пирамиде \(FABCD\) с основанием \(ABCD\) все ребра равн...

#2943 - Основанием пирамиды \(SABCD\) является трапеция \(ABCD\), у которой \(AD || BC\). На...

#2993 - В правильной треугольной пирамиде \(SABC\) точка \(P\) – середина \(AB\), точка \(K\...

#3120 - Дан куб \(ABCDDA_{1}B_{1}C_{1}D_{1}\). А) Докажите, что каждая из плоскостей \(BDA_{...

#3239 - Через середину ребра \(AA_{1}\) куба \(ABCDA_{1}B_{1}C_{1}D_{1}\) перпендикулярно пр...